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Abstract—This paper presents the design and optimization of
a Computational Fluid Dynamics (CFD) solver. Our solver is
a structured mesh finite-volume code that simulates the fluid
motion of compressible viscous flow at transonic speeds. One
of the main challenges in this solver is the interaction between
multi-stencils with different computational intensities and distinct
memory access patterns.

In this paper, we address the above challenge to design a high-
performance multi-stencil solver on multicore systems. We use
the roofline model as a guideline for choosing optimizations best
suited for increasing the computational intensity and achieving
a higher percentage of the machine peak performance. We
show that optimizations and parallelizations combined, our solver
achieves 105×, 159×, and 160× speedup compared to the baseline
implementation on Intel Haswell, AMD Abu Dhabi, and Intel
Broadwell respectively. We also compare against Domain Specific
Languages (DSL), specifically Halide. Our hand-tuned solver
outperforms code generated by Halide by up to 24×. Looking
forward, we identify new opportunities to improve DSL’s to
bridge this gap.

Index Terms—Navier-Stokes equations, Computational Fluid
Dynamics, Multi-stencils, Roofline performance model

I. INTRODUCTION

Computational Fluid Dynamics (CFD) solvers are designed

to understand complex physical phenomena in science and

engineering applications. We consider the problem of solving

Navier-Stokes equations which is a challenging multi-scale

multi-physics problem that demands massive computations at

extreme levels of parallelism. Explicit time-marching schemes

are one of the popular numerical methods for solving the

Navier-Stokes equations. These schemes are attractive because

the solution at a given cell in a grid depends only on its

neighboring cells (local interaction), and are commonly known

to exhibit a stencil pattern.

Although there is a significant body of work on imple-

menting stencil computations on both CPUs and GPUs [4],

[5], [10], [22], nearly all of these studies seek to optimize

single stencils. On the contrary, we look at the entire solver.

Our solver is a realistic structured mesh finite-volume code

and presents many challenges of real applications that are not

addressed by similar papers in the literature. Specifically, our

solver consists of hybrid-stencils with different computational

intensities and memory access patterns. While the challenges

of single-stencil kernels still apply to this problem, solving a

hybrid multi-stencil kernel poses new challenges, since each

stencil has a unique pattern and requires access to different

neighbors. As a result, finding the optimal schedule to balance

redundant computation, locality, and parallelism is non-trivial.

First, we begin by characterizing the different stencil pat-

terns in the solver. Second, we systematically outline the

different optimization techniques guided by the roofline per-

formance model [24]. We analyze how multiple stencils impact

optimization and discuss techniques for improving locality

and parallelism by trading off redundant work. Third, we

ask whether CFD applications can be expressed in stencil

domain-specific languages (DSLs). Specifically, we consider

Halide [15] which is a popular DSL adopted by industry and

academia. Finally, we also ask whether such an implementa-

tion can deliver a sufficient combination of optimizations to

compete with a hand-tuned code and what are its limitations.

Our case study for evaluation is an external flow solution

around a cylinder that predicts a circulation bubble.

Contributions and findings. This paper makes the follow-

ing contributions.

• We create a high-performance multi-stencil solver for

compressible viscous flows for multicore systems. This

is achieved by various optimizations such as – (1) loop

re-structuring and fusion that combines different stencil

sweeps and flux calculations, (2) a two-level blocking

strategy for iteration order within each stencil sweep and

for multicore parallelization, (3) SIMD-aware code and

data layout re-structuring to enable auto-vectorization,

(4) management of NUMA page placement using first-

touch initialization policy, (5) eliminating false sharing

using padding of data and modifying the data structure

to minimize shared data, and (6) strength reduction.

• We document a systematic process guided by the roofline

performance model in transforming a memory bound

solver to a highly tuned one. We explain this process

in a way that is useful for other tuning practitioners.

• We present an external flow solution around a cylinder

as a case study to evaluate our solver at subsonic speeds

and discuss the performance results. Our optimized solver

achieves 105×, 159×, and 160× speedup compared to

the baseline implementation [11] on Intel Haswell, AMD

Abu Dhabi, and Intel Broadwell respectively.

• Finally, we implement our solver in Halide and show

that it’s possible for a DSL to capture realistic use cases



like this solver. However, our hand-tuned implementation

exceeds code generated by Halide by up to 24×. The

main performance difference is due to Halide’s inability

to generate efficient vectorized code and lack of support

for NUMA machines. Additionally, Halide and other

DSL’s mainly focus on cell-centered stencils which do

not capture all the stencils patterns in real applications.

Our findings quantify the gap between a hand-tuned

implementation and code generated by a DSL for this

class of applications.

II. SOLVER OVERVIEW AND GOVERNING EQUATIONS

In this section. we first describe the Navier-Stokes equations

and the numerical schemes used for simulating the realistic

geometries of flows. Then, we characterize in detail the

different stencil patterns and their performance challenges.

A. Governing Equations

Variable Description

~Finv Inviscid fluxes
~D Fluxes of artificial dissipation
~Fc Convective fluxes
~Fv Viscous fluxes
~W Conservative variables
~R Residuals

Ω Cell volume

S Face surface

~n Face normal vector

∆t Real time step

∆t∗ Pseudo time step

α Coefficient for Runge-Kutta scheme

Λ̂S Spectral radii of convective flux Jacobian

ε Artificial dissipation coefficients

u Component of velocity vector in the x direction

TABLE I: Notation.

This paper is based on the laminar implementation of an

existing time accurate three-dimensional Navier-Stokes code

known as ParCAE [11], [26]. It solves the 3D Unsteady

Reynolds Averaged Navier-Stokes (URANS) equations on

structured grids using a cell centered finite-volume method. A

time-accurate solution is obtained through a dual-time stepping

scheme proposed by Jameson [8]. The notation that will be

used throughout the rest of the paper in summarized in Table I.

The set of 5 governing equations forming the Navier-Stokes

equations can be written as follows.

d( ~WΩ)i,j,k
dt

= −
~Ri,j,k

where ~Wi,j,k is the vector of conservative variables (con-
servation of mass, momentum in each direction, and energy)

for cell (i, j, k), Ω is the cell volume, and ~R is the vector of

residuals.

The time derivative is discretized by a backward-difference

scheme of second-order accuracy as shown below.

3( ~WΩ)n+1
i,j,k − 4( ~WΩ)ni,j,k + ( ~WΩ)n−1

i,j,k

2∆t
= −

~Ri,j,k( ~W
n+1)

At each time step the problem is reformulated as the following
steady-state problem in pseudo time t∗.

d( ~W ∗Ω)n+1
i,j,k

dt∗
= −

~R∗

i,j,k( ~W
∗)

where ~W ∗ = ~Wn+1 when the solution is converged, and

~R∗

i,j,k( ~W
∗) = ~Ri,j,k( ~W

∗)+

3( ~WΩ)∗i,j,k − 4( ~WΩ)ni,j,k + ( ~WΩ)n−1
i,j,k

2∆t
.

For each real time step, the set of equations are marched
to a steady state in pseudo time. The pseudo time marching

is implemented as a sequence of pseudo time steps, each of

them discretized with a multi-stage Runge-Kutta scheme. The

solution at stage m is

~Wm
i,j,k = ~W 0

i,j,k −

αk∆t∗i,j,k
Ω∗

i,j,k

[

1 +
3αk∆t∗i,j,k

2∆t

]

−1

∗

[

~Ri,j,k( ~W
m−1) +

3( ~WΩ)0i,j,k − 4( ~WΩ)ni,j,k + ( ~WΩ)n−1
i,j,k

2∆t

]

(1)

where α is the Runge-Kutta coefficient for the correspond-

ing stage.

The spatial discretization of the residual is 2nd order ac-

curate and is composed of the summation of the face fluxes.

~Ri,j,k( ~W ) =

NF
∑

m=1

[(~Fc −
~Fv)m~nmSm]i,j,k

with NF equal to the number of cell faces (6 for a 3D
hexahedral grid), S the face surface, n the normal vector to

the face, and ~Fc and ~Fv are the convective and viscous fluxes

accounting for inertial and viscous effects, respectively.

Defining the conservative variables at a face (e.g. at the face

between cell i and cell i+ 1) as

~Wi+1/2,j,k =
1

2
(Wi,j,k +Wi+1,j,k)

and avoiding the j, k notation, the contribution to the residual
of the convective fluxes at face i+ 1/2 is

[~Fc~nS]i+1/2 ≈
~Finv( ~Wi+1/2)(~nS)i+1/2 −

~Di+1/2

where the inviscid fluxes ~Finv are discretized with 2nd

order central difference. To avoid numerical instabilities, local

artificial dissipation is added to ~D following the classic JST

scheme [9].

~Di+1/2 =Λ̂S
i+1/2 [ε

(2)
i+1/2(

~Wi+1 −
~Wi)

− ε
(4)
i+1/2(

~Wi+2 − 3 ~Wi+1 + 3 ~Wi −
~Wi−1)] (2)

The contribution of the viscous fluxes is more challenging to
calculate since it requires an auxiliary grid. The formulation in

the viscous terms contains gradients of velocity. Using Green’s

theorem, and defining an auxiliary grid centered on the vertices
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Fig. 1: High-level overview of the URANS solver. The dashed box denotes one iteration where we solve for ~Wi,j,k. The yellow box
highlights the calculation of the fluxes which is the computational core of the solver.

of the original grid, the gradients of velocity at such vertices

are defined as (e.g. for ∂u/∂x)

(

∂u

∂x

)

≈

1

Ωaux

NF
∑

m=1

(unxaux
Saux)m

where the summation is on the faces of the auxiliary grid.
After computing vertex velocity gradients using the above

equation, the face values of the viscous fluxes on the original

grid are recovered by averaging the obtained vertex values.

B. Stencil Patterns

The overall structure of the solver is shown in Figure 1. We

solve for the updated values of ~Wi,j,k in Equation 1 at each

stage of the Runge-Kutta scheme which is shown as the dashed

box in the figure. The yellow box denotes the calculation of

multiple fluxes which is the computational core of the solver

and accounts for more than 90% of the overall execution time.

This consists mainly of three flux calculations namely, viscous

flux, inviscid flux, and artificial dissipation. Since our scheme

is explicit, each cell is updated based on the values of a subset

of the neighboring cells and thus the computational pattern is

a stencil. While all the flux calculations have a stencil pattern,

each has a unique pattern, with a different size and a distinct

memory access pattern. As we will further elaborate in this

section, these multiple stencil patterns pose the main challenge

in the design and optimization of this CFD solver.

We divide the stencils into two categories namely, cell-

centered and vertex-centered.

Cell-centered stencils – Artificial dissipation, ~D and in-

viscid fluxes, ~Finv are examples of cell-centered stencils. The

artificial dissipation calculated in Equation 2 is a blend of

second order and fourth order differences. The top of Figure 2

illustrates the stencil pattern for computing the orange colored

cell. The artificial dissipation at each surface, which is shown

with a red arrow, is computed using the values of the current

cell (orange) and the neighbors shown in dark blue. For each

direction, we compute the outgoing flux at cell (i, j, k), then

reuse the values calculated at the cells (i−1, j, k), (i, j−1, k)
and (i, j, k − 1) for the incoming fluxes. The stencil pattern

for inviscid fluxes is similar to artificial dissipation but it only

requires one neighboring cell in each direction.

Vertex-centered stencils – The viscous flux calculation,
~Fv is an example of vertex-centered stencils. As discussed in

Section II-A, to compute the viscous fluxes we have to first

find the velocity gradients at the vertices of each cell. This

is shown in the bottom of Figure 2, where the colored cubes

are the cells in the original grid, whereas the dashed cubes

represent the cells of the auxiliary grid. The red point is the

center of the auxiliary grid which is the vertex of the original

grid. The viscous flux calculation consists of two stages. First,

we use an 8 point stencil to calculate the gradients at each

vertex (8 vertices in 3D), and then a 4 point stencil to find the

flux value at each surface (6 surfaces in 3D).

Now, we can analyze the differences between cell-centered

and vertex-centered stencils using the above examples. First,

vertex-centered stencils require an additional sweep over the

entire grid since it’s a 2-stage calculation. Moreover, the 2-

stages consist of 2 different stencils operating on distinct

pieces of data. Second, cell-centered stencils access an equal

number of neighboring cells in each dimension, whereas the

memory access pattern of the vertex-centered stencils requires

accessing a block of neighbors. Third, since the grid is stored

in memory such that accesses in the i direction are unit-stride,

accesses in the j and k directions are more expensive and

vertex-centered stencils access more neighboring cells in j
and k dimensions with different strides thus resulting in a

more memory-bound stencil pattern compared to that of the

cell-centered stencils.

Another aspect of these stencil computations that adds to

the challenges of designing an efficient multi-stencil solver is

that each of the stencils discussed above consists of multiple

terms (such as the spectral Radii (Λ̂S), average and auxiliary

surfaces, artificial dissipation coefficients (ε), etc.) that are

used to compute the final flux value at the surface. Finding the

optimal schedule for these intermediate values is non-trivial.

For instance, intermediate values that recur in different stencils

can either be stored in memory or computed on the fly. While

the former avoids redundant computation, it causes more

memory accesses. Thus achieving best performance requires

finding an optimal balance of different potential trade-offs.

III. EXPERIMENTAL SETUP

In this section, we describe the different architectures and

case study used to explore our solver’s performance.

Architectures – We summarize the key differences among

the three multi-core SMP’s used in this study: dual-socket 8-





Fig. 3: Streamlines and pressure contours for cylinder simulation
with Reynolds number = 50 and Mach number = 0.2. Two symmetric
circulation bubbles are formed behind the cylinder.

Next, we use this model to determine the limiting factors

of performance and guide the optimizations starting from the

baseline code. The roofline model requires an estimate of the

total floating point operations and data movement. To estimate

the number of floating point operations, we use PAPI [12]

and also verify the numbers by comparing it against Intel’s

Software Development Emulator (SDE) and likwid [21]. For

estimating the number of bytes accessed, we use likwid, which

uses uncore hardware counters for DRAM accesses.

Our code is based on a time accurate 3D Navier-Stokes

solver written in Fortran [11] that is currently used by com-

putational scientists. It was written with the focus of optimal

computation, which is true of most codes designed during its

time. As a first step, we port the code to C++. From now on,

we will refer to this version as Baseline. The overall structure

of the solver is shown in Figure 1, and the computational

pattern is illustrated in Figure 2 and discussed in Section II-B.

In the rest of this section, we discuss each optimization in

detail and report the achieved performance and speedup on

top of the Baseline in Figures 4 and 5 respectively.

A. Strength reduction

Math operations such as pow and sqrt were one of

the hotspots observed with Intel VTune [16] in the double

precision Baseline. Unfortunately, these instructions have long

latencies and are not pipelined, thus limiting performance.

For instance, on Haswell and Broadwell, double precision

sqrt has 19-35 cycles latency1. To address this deficiency,

we replace the scalar sqrt/pow with multiplication and

addition [3]. Doing so requires more floating point instructions

but they have low latencies and are pipelined. Apart from

round-off error due to a different combination of instructions,

there is no loss of overall accuracy since all the operations are

done in double precision. As such, with sufficient instruction-

and data-level parallelism, we expect this approach to improve

performance. Figure 5 shows that strength reduction improves

1https://software.intel.com/sites/landingpage/IntrinsicsGuide

single-core performance by 1.2×, 1.4×, and 1.3× on Haswell,

Abu Dhabi, and Broadwell respectively.

B. Stencil Fusion

The stencils in our solver discussed in Section II-B have

dependencies between themselves (intra-stencil) and across

multiple stencils (inter-stencils). Additionally, there are many

valid schedules for computing the multi-stencils which have

different trade-offs between redundant computation, locality,

and parallelism. To improve the performance of the solver, we

need to find the best schedule respecting these stencil depen-

dencies. Below, we discuss the different trade-offs for finding

the optimal schedule and propose optimizations suitable for

current x86 platforms.

a) Intra-Stencil Fusion: The fluxes include two compo-

nents – incoming flux and outgoing flux. In the Baseline, we

first calculate the outgoing fluxes at cell (i, j, k) as shown

in Figure 2, then reuse the values calculated at the cells

(i+1, j, k), (i, j+1, k) and (i, j, k+1) for the incoming fluxes.

This is computationally efficient since each flux is calculated

only once. However, the roofline plot shows that the solver

is currently highly memory-bound on all 3 systems. Given

this observation, trading off memory accesses for redundant

computation seems like a reasonable optimization.

Therefore, instead of only computing the outgoing fluxes at

each cell, we compute all six fluxes (two in each direction)

for every cell, thus eliminating the need for reading the

incoming fluxes from memory. Referring back to Figure 2,

this optimization is fusing all the stages within each blue

box into one stencil resulting in a 13-point stencil for the

artificial dissipation and a 7-point stencil for the inviscid flux

calculation. Although this optimization results in the redundant

computation of the fluxes, it allows for improved locality and

reduces the number of memory accesses. Moreover, it also

removes the dependency between neighboring cells in any

given iteration which enables cells to do the computation inde-

pendent of one another which is better suited for parallelism.

b) Inter-Stencil Fusion: The computation of the viscous

fluxes requires the gradients of velocity which are computed

on the cell vertices which form the centers of an auxiliary

grid. The Baseline performs this calculation in two stages as

discussed in Section II-B where we store the values of gradi-

ents in memory that is later accessed in the second traversal to

compute the viscous fluxes. The two stages comprising of the

two traversals form different stencil patterns where every value

is computed only once for computational efficiency. Given the

memory-bound nature of our solver observed by the roofline,

we fuse the two distinct stencils into a single stencil that

computes the final value of the viscous flux on the surface in

one traversal. The dashed black box in the bottom of Figure 2

corresponds to the stencils that are fused.

While inter-stencil fusion is worthwhile since it eliminates

the memory accesses required to read the gradients from mem-

ory, it calls for redundant computation as each gradient is now

computed by each of the 8 cells in 3D adjacent to that vertex.

Figure 4 shows that fusion increases the arithmetic intensity







vectorized code over manual SIMDization using intrinsics.

However, the compiler initially failed to auto-vectorize the

code, for the most part. To aid and enable the compiler to auto-

vectorize the solver, we implement a number of optimizations

and transformations. In this section, we discuss these opti-

mizations which are categorized as code structure and data

structure transformations. We use the Intel compiler and its

vectorization guide [1] while applying these optimizations.

1) SIMD-aware Code Structure: The transformations de-

scribed in this section reorganize the code structure to enable

auto-vectorization and also improve the performance gain of

vectorization.

a) Loop Unswitching: In this modification, we avoid

using if/else conditional statements within the body of the

loops. Even though the compiler could potentially vectorize

if such statements can be implemented as masked assign-

ments [1], the performance gain is considerably higher without

these conditionals. In order to remove the if/else clauses,

we take either of the following approaches, depending on the

clause – a) move the statement outside the loop and duplicate

the body of the loop, or b) use C++ conditional operator.

b) Loop Fission: This transformation is largely beneficial

when vectorization fails due to dependencies. For instance,

in cases where a value is updated, used and then updated

again, the compiler detects a Write After Write dependency

(Intel compiler calls this an Output dependency) and fails to

vectorize. The code in Loop 1 is an example of such a case.

Loop 1: Sample loop with dependencies

for (int i = 0; i = max_i; ++i) {

A[i] = SomeValue;

B[i] = /*Some calculation on A[i];*/

A[i] = UpdatedValue;

}

Breaking this loop into two separate loops as shown in Loop

2, allows the compiler to vectorize both loops since there are

no dependencies within a loop.

Loop 2: An example of loop fission

for (int i = 0; i = max_i; ++i)

A[i] = SomeValue;

for (int i = 0; i = max_i; ++i) {

B[i] = /*Some calculation on A[i];*/

A[i] = UpdatedValue;

}

This pattern occurs in viscous flux computation where we

calculate and then use values such as average velocity gra-

dients. While this adds to the overhead of a new loop, this

cost is negligible compared to the performance gain due to

vectorization.

c) Loop Unrolling: Loop unrolling is a simple transfor-

mation and the compiler is able to apply this optimization to

most loops. However, in the case of nested loops, the compiler

only vectorizes the innermost loop. This is not efficient in

cases where the inner loop has iteration counts. In such cases,

we manually unroll the small loops in order to force the

compiler to vectorize a larger loop.

2) SIMD-aware Data Layout: While the preceding code

structure modifications enable vectorization, we further im-

prove the performance gain by re-designing the data structures

layout in memory in a way that better suits SIMD instructions.

a) Pointer Aliasing: Using the restrict keyword in

C++ for pointer declaration indicates that the target of that

pointer will not be accessed by any other pointers, thus

avoiding pointer aliasing. Even though using this keyword

requires extra care while working with pointers, it is essential

for ensuring auto-vectorization.

b) Structure of Arrays: Table III summarizes the vari-

ables used in this solver. Inviscid fluxes, artificial dissipation,

and viscous fluxes are stored as a vector of size 5 for each

cell since these values are computed for all the conservative

variables as discussed in Section II-A. These values can be

stored in memory as either an Array of Structures (AoS)

or a Structure of Arrays (SoA). The advantage of using

AoS is that it better exploits locality when accessing the

5 components for each cell in a loop since all 5 values

can be read into the cache in a cache line. However, the

disadvantage of this approach is that it requires non-unit stride

memory accesses to fetch different components of neighboring

cells into vector registers. In contrast, SoA is better suited

for vectorization as it allows for unit stride load and store

operations within the innermost loop over the grid. Thus to

achieve better performance with SIMDization, we reorganize

all the aforementioned data structures as SoA’s, where each

array holds the values for one of the conservative variables.

The performance improvement with the code structure and

data-layout transformations is shown as SIMD transformations

in Figure 5. The red bar shows the speedup achieved with com-

piler auto-vectorization after applying these transformations.

Combined, we achieve speedups of 2.3 − 3.7× on Haswell,

1.5−3.1× on Abu Dhabi, and 1.6−2.3× on Broadwell respec-

tively. Note that the speedup due to vectorization decreases as

we increase the number of threads on all three systems. This is

because the code becomes progressively more memory-bound

as we increase the number of threads and as a result, the benefit

of vectorization decreases. On the contrary, the performance

improvement due to blocking increases as we scale the number

of threads for the same reason.

V. COMPARISON WITH DSL

In this section, we attempt to answer two key questions –

(a) Can CFD applications be expressed in stencil DSLs? (b)

Can such an implementation deliver a sufficient combination

of optimizations to compete with a hand-tuned code? If not,

what are its limitations?

In order to answer the above questions, we choose

Halide [15], a DSL designed for image processing pipelines

which consist of multi-stencils. It decouples the algorithm

specification from the schedule that can be further tuned either

manually or automatically for performance. An advantage

of Halide is that the scheduling schemes account not only



for a single stencil but also multi-stencils and how they

operate together. This is essential for optimal scheduling of an

application such as our CFD solver. Halide is one of the DSLs

that is suitable for such multi-stencil applications and this was

the main reason behind our choice of Halide for comparison.

Halide provides knobs for various optimizations such as

tiling, parallelization, and vectorization. The main challenge is

efficiently applying these optimizations and finding the sched-

ule that achieves the best performance. The optimized Halide

schedule we obtained is similar to our intra-stencil fusion

scheduling discussed in Section IV, where we find the best

ordering for computing the intermediate values and find the

optimal trade-off between locality, redundant computation, and

available parallelism. Finding the best schedule in Halide also

entails finding the best tiling size in both x and y directions,

similar to finding the best block size in our hand-tuned code.

While porting the solver to Halide required minimal effort,

finding the optimal schedule was non-trivial. We compare the

speedup achieved by our hand-tuned code against our best

schedule in Halide. Table IV summarizes these results.

Across the board, we achieve higher speedups after applying

single-core optimizations compared to Halide. While Halide

supports optimizations such as loop unrolling, loop fusion,

tiling in x and y dimensions, it does not support strength

reduction. Also, it has the additional cost of estimating the

bounds for all the stencil loop computations which adds to

the overhead.

We then apply vectorization on top of single-core optimiza-

tions. Halide does not gain much from vectorization, mainly

because SIMDization is not one of the optimizations focused

on in the context of image processing. Additionally, our hand-

tuned implementation includes data layout transformations to

enable better vectorization which is not done by Halide.

Finally, we apply parallelization on top of vectorization.

Halide currently does not account for NUMA (adding support

for NUMA is in progress [6]) and therefore we achieve better

scalability when using all the cores. This is especially evident

in Abu Dhabi that has the most number of NUMA nodes and

there is a significant difference in speedup achieved with our

NUMA-aware OpenMP implementation compared to Halide.

It is worth noting that Halide delivers the best performance

for stencil patterns that are categorized as cell-centered stencils

in Section II-B. These are the commonly studied stencil

patterns in most of the stencil optimization studies. This is

one of the reasons for the poor performance of Halide and

other similar DSLs on real applications. We also compare our

manual Halide schedule against the schedule generated by the

auto scheduler [13]. Our optimized schedule performs 2−20×
better than the auto scheduler for different stencil patterns,

similarly showing best performance for cell-centered stencils.

VI. RELATED WORK

Stencil calculations perform sweeps through an entire data

structure that is typically larger than the capacity of the data

cache. As a result, these computations achieve a low fraction

of theoretical peak performance. This has lead to a vast

number of studies that focus on tiling optimizations to exploit

locality by performing operations on cache-sized blocks of

data [4], [5], [10], [17], [23]. The preceding work mostly

focuses on 2nd order stencils, whereas higher order stencils

tend to become more compute bound. [2] implements a partial

sum optimization that makes higher-order stencils bandwidth

bound, prior to applying similar optimizations that improve

the performance of memory-bound stencils.

While most traditional tiling optimizations use domain

decomposition to improve spatial locality, studies have also

focused on exploiting the locality in the time dimension [7],

[19], [22], [25]. An extension to single time step blocking is

the time-skewing algorithm [19], [25] which blocks in both

space and time.

Another body of work in this domain is on developing

domain-specific compilers and code generators that target

stencil computations. Halide [13], [15] focuses on image

processing pipelines, decouples algorithm and schedule, and

provides an auto-scheduler for finding the optimal sched-

ule. Pochoir [20] uses cache-oblivious tiling. [2] focuses on

compiler-directed polyhedral transformations of stencils but

for higher-order stencils that are typically compute-bound.

This work that captures multi-physics flows differs from the

preceding work in a couple of ways. First, we optimize a nu-

merically accurate solver that capture real physics and consist

of multiple terms, and therefore different stencil calculations in

each time step. Optimizing these different stencils separately

and also as an entire solver that requires scheduling of the

different stencils is a challenge addressed in our work. Halide

is one of the few compiler frameworks that consider the trade-

offs of scheduling multiple stencils. We present a comparison

against Halide and suggest optimizations to bridge the gap

between hand-tuned code and code generated by DSL’s.

While there have been efforts in mapping CFD solvers to

multicore architectures, most of the work in this field has

focussed on a parallel implementation using either OpenMP or

MPI [18], as opposed to our work where we focus on both ef-

ficient parallelization and multi-stencil specific optimizations.

VII. CONCLUSION

Given that single-node multicore performance will be criti-

cal to scalability on next-generation extreme scale systems, we

believe our extensive study of optimizations and parallelization

contributes a solid foundation for the future scalable software

infrastructure for next-generation CFD on such machines. We

use the roofline model to guide the optimizations to improve

the performance based on the arithmetic intensity at each step

and push the solver towards the compute-bound region. The

optimizations discussed in this work were designed not only

to improve the execution time but also to reach a higher

percentage of the peak performance of the machine.

While some of the optimizations discussed in this work

have been previously applied to stencil computations [4],

[5], [7], [14], this is one of the first efforts in addressing

the challenges of an entire solver which consists of multiple

stencils. We discuss the different patterns of these stencils and



TABLE IV: Comparison of the speedup achieved by the hand-tuned code against Halide. Optimization stands for strength reduction,
fusion, and blocking. +Vectorization is SIMD-aware transformations and compiler auto-vectorization on top of single-core optimizations,
and +Parallelization is parallelization on top of vectorization.

Haswell Abu Dhabi Broadwell

Hand-tuned Halide opt Hand-tuned Halide opt Hand-tuned Halide opt

Optimization 3.5× 1.5× 3.0× 1.3× 3.2× 1.4×
+ Vectorization 3.6× 1.1× 2.3× 1.0× 2.8× 1.2×

+ Parallelization 7.9× 5.8× 23.3× 5.1× 17.6× 6.2×

the challenges they give rise to, along with an in-depth analysis

of an important real-world application.

Furthermore, we implement this solver using a state-of-the-

art domain-specific language (Halide) to compare and quantify

the performance achieved by DSLs against hand-tuned codes

for this application domain. While porting this solver to

Halide was relatively easy, finding the optimal schedule was

challenging and required an understanding of the underlying

architecture. Our solver outperforms Halide by 10×, 24× and

15× on the three different platforms.

Looking forward, we see numerous opportunities for im-

proving stencil DSLs. First and foremost, Halide and other

stencil DSLs are largely focused on optimizing cell-centered

stencils. While this is an important stencil pattern, real appli-

cations consist of multi-stencils which are cell-centered, face-

centered, and vertex-centered. In-depth analysis and optimiza-

tion across these multi-stencils with different characteristics

should be a priority for future stencil DSLs to bridge the

performance gap for real CFD applications. Next, NUMA-

aware data allocation is critical on current and future systems.

Halide’s poor scaling with increasing number of cores is

due to lack of support for NUMA and lack of efficient

vectorization or SIMD-aware data layout transformations. We

believe addressing the above deficiencies will make stencil

DSLs competitive with hand-tuned codes.
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